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Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) has been regarded as a
persistent challenge for the swine farms worldwide. microRNAs (miRNAs) play key roles in regulating almost
every important biological process, including virus-host interaction. In this study, we found that miR-204 was

2111:(;233 highly expressed in cells that were not permissive to PRRSV infection compared with cells susceptible to PRRSV
LCSBP & infection. Subsequently, we demonstrated that overexpression of miR-204 significantly inhibited PRRSV repli-

cation in porcine alveolar macrophages (PAMs). Through bioinformatic analysis, we found that there existed a
potential binding site of miR-204 on the 3'UTR of microtubule associated protein 1 light chain 3B (MAP1LC3B,
LC3B), a hallmark of autophagy. Applying experiments including luciferase reporter assay and UV cross-linking
and immunoprecipitation (CLIP) assay, we demonstrated that miR-204 directly targeted LC3B, thereby down-
regulating autophagy. Meanwhile, we investigated the interplay between autophagy and PRRSV replication in
PAMs, confirming that PRRSV infection induces autophagy, which in turn facilitates viral replication. Overall, we
verify that miR-204 suppresses PRRSV replication via inhibiting LC3B-mediated autophagy in PAMs. These
findings will provide a novel potential approach for us to develop antiviral therapeutic agents and controlling

measures for future PRRSV outbreaks.

1. Introduction

Porcine reproductive and respiratory syndrome (PRRS), also known
as “blue ear” disease, is an infectious disease that leads to reproductive
failures in pregnant sows and severe respiratory syndromes in pigs of all
ages (You et al., 2022). It has threatened the global pig industry and
caused tremendous economic losses since its outbreak in the late 1980s
(Dhakal and Renukaradhya, 2019; Pileri and Mateu, 2016). PRRS is
caused by porcine reproductive and respiratory syndrome virus (PRRSV),
a single-stranded positive-sense enveloped RNA virus, which belongs to
the family Arteriviridae in the order Nidovirales (Meulenberg, 2000). The
PRRSV genome is approximately 15.4 kb in length and contains at least
11 open reading frames (ORFs), encoding 8 structural proteins and at
least 16 non-structure proteins. According to sequence analysis, PRRSV is
mainly divided into PRRSV-1 (species Betaarterivirus suid 1) and PRRSV-2
(species Betaarterivirus suid 2) (Wang et al., 2021). The nucleotide
sequence similarity between PRRSV-1 and PRRSV-2 is about 50%-70%
(Kappes and Faaberg, 2015). In 2006, an atypical PRRS caused by highly
pathogenic PRRSV (HP-PRRSV) suddenly broke out in China and quickly
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spread to most areas of Asia, which has made the pig industry face great
challenges (Chen et al., 2021). Due to the continuous recombination and
mutation of PRRSV, the main prevention and control measures against
PRRS, such as vaccines, cannot provide a satisfactory protective role
(Zhang et al., 2022). Hence, it is an urgent need to seek new targets that
can regulate PRRSV infection and help us find better design of thera-
peutic approaches and preventive measures to minimize PRRS impacts
on the swine industry.

microRNAs (miRNAs) are a conserved class of endogenous non-
coding single-stranded RNAs, which consist of approximately 22 nucle-
otides and regulate gene expression post-transcriptionally. In mammals,
miRNAs play key roles in several biological processes, including cell
differentiation, metabolism and apoptosis (Rhman and Pmo, 2022).
Furthermore, numerous studies have demonstrated the widespread
importance of miRNAs in host-virus interaction. miRNAs participate in
modulating infection and replication of multiple viruses. For instance,
miR-133a suppresses dengue virus (DENV) replication, likely through
interference with polypyrimidine tract binding protein (PTB) expression
(Castillo et al., 2016). miR-323, miR-491 and miR-654 resist the
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replication of HIN1 influenza A virus (IAV) via binding to the viral RNA
polymerase PB1 subunit gene (Keshavarz et al., 2018).

Autophagy is a conserved cellular recycling mechanism in eukar-
yocytes, which degrades long-lived cytoplasmic proteins and damaged
organelles to maintain intracellular homeostasis (Klionsky, 2008). Many
intracellular and extracellular stresses, such as nutrient deprivation,
growth factor depletion, infection, and hypoxia, can induce the auto-
phagic response (Dikic and Elazar, 2018). Besides the physiological
functions of autophagy, accumulating evidence has indicated that auto-
phagy plays a dual role in the infection processes of diverse pathogens. As
an irreplaceable component of the human immune defense system,
autophagy is essential in the face of viral invasion, whereby cells can
eliminate viral proteins, nucleic acids and viral particles through auto-
phagy to maintain the health of the body (Levine and Kroemer, 2019;
Yang and Klionsky, 2020). However, some viruses have evolved mech-
anisms to evade host cellular autophagy and even hijack autophagy to
facilitate their own replication, such as PRRSV, grass carp reovirus
(GCRV), and pseudorabies virus (Xu et al., 2018; Zhou et al., 2016; Zhu
et al., 2022).

In this study, we compared the miRNA profiles in PRRSV target cells
(porcine alveolar macrophages, PAMs) and non-permissive cells (porcine
peritoneal macrophages, PPMs) to identify differentially expressed
miRNAs (DEmiRNAs), and found that miR-204 was highly expressed in
PPMs and lowly expressed in PAMs. We then showed that overexpression
of miR-204 inhibited PRRSV replication in a dose-dependent manner.
Subsequently, we demonstrated that miR-204 directly targeted micro-
tubule associated protein 1 light chain 3B (MAP1LC3B, LC3B), which in
turn suppressed autophagy induced by PRRSV infection and rapamycin
(an autophagy agonist). Therefore, we conclude that miR-204 is a novel
repressor of PRRSV replication and may provide us with a new thera-
peutic target for controlling PRRS in the future.

2. Materials and methods
2.1. Cells and viruses

PAMs were obtained from lung lavage of 6—8-week-old specific-
pathogen-free (SPF) pigs and cultured in RPMI 1640 medium (Gibco,
USA) with additional 10% heat-inactivated fetal bovine serum (FBS;
Gibco, USA) and 1% penicillin-streptomycin (Gibco, USA). Porcine
peritoneal macrophages (PPMs) were isolated from the peritoneal lavage
of SPF pigs and maintained with the same culture condition as PAMs.
3D4/21 cells (ATCC number: CRL-2843 cells), a porcine alveolar
macrophage cell line, were maintained in RPMI 1640 medium containing
10% heat-inactivated FBS and 1% penicillin-streptomycin. All of the cells
were cultured at 37 °C with 5% CO..

The HP-PRRSYV isolate HV (GenBank Accession No. JX317648) and
classical PRRSV isolate VR2332 (GenBank Accession No. U87392) were
propagated on PAMs and stored at —80 °C until use.

2.2. Reagents and antibodies

Rabbit monoclonal antibody against LC3B (#43566) was purchased
from Cell Signaling Technology (USA). Mouse monoclonal p-actin anti-
body was purchased from Sigma-Aldrich (USA). Ago2 protein mono-
clonal antibody (#H00027161-M01) was purchased from Abnova
(China). PRRSV nucleocapsid (N) antibody was prepared in our labora-
tory. Goat anti-mouse secondary antibody (#SE131) and goat anti-rabbit
secondary antibody (#SE134) were purchased from Solarbio (China).
The activator and inhibitor of autophagy, rapamycin (#HY-10219) and
3-methyladenine (3-MA) (#HY-19312), were purchased from MedChe-
mExpress (USA). HiperFect transfection reagent was purchased from
QIAGEN (Germany).

The miRNA mimics, negative control (NC) mimics, and siRNAs were
synthesized by Genepharma (China) and listed in Supplementary
Table S1.
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2.3. Small RNA deep sequencing

We obtained PAMs and PPMs from lung and peritoneal lavage of SPF
pigs, and cultured cells at 37 °C with 5% COx for 24 h. Then, cells were
collected and the TRIzol reagent (Invitrogen, USA) was used to isolate
total cellular RNA from PAMs and PPMs. Then, the differential expression
of miRNAs was analyzed by deep sequencing, which was performed
using an Illumina Genome Analyzer at LC Sciences (Houston, USA). The
expression of miRNAs was analyzed by calculating fold-change. miRNAs
were labeled as differentially expressed, when the fold change was > 2
and P value was < 0.01.

2.4. Transfection and quantitative real-time PCR

According to the instructions, all the miRNA mimics, NC mimics or
siRNAs were transfected into PAMs using HiPerFect transfection reagents
(QIAGEN). Meanwhile, NC mimics were used as the matched controls.

Total RNAs were extracted from cells with TRIzon Reagent (CWBIO,
China). HiFiScript cDNA Synthesis Kit (CWBIO, China) was used to
reverse transcribe 1 pug of RNAs into cDNAs according to the manufac-
turer's instructions. Quantitative real-time PCR analysis was performed in
a ViiA 7 real-time PCR System (Applied Biosystems) with SYBR Green
real-time PCR Master Mix (Mei5 Biotechnology, China). Gene-specific
primers were listed in Supplementary Table S2.

To quantify miRNAs, we used Hairpin-it™ Real-time PCR kit (Gene-
pharma, China). The 27 24CT ot method was used to calculate the relative
expression of the target gene. The expression of mRNAs was normalized
to GAPDH, while miRNAs were normalized to U6.

2.5. Indirect immunofluorescence assay (IFA)

PAMs were transfected with NC or miRNA mimics for 12 h followed
by infection with HP-PRRSV isolate HV at an MOI of 0.01. At 36 h later,
cells were fixed in cold methanol-acetone (1:1) for 10 min at 4 °C,
washed three times with phosphate buffered saline (PBS), and then
blocked with 5% goat serum in PBS for 30 min at room temperature.
Then, cells were incubated with anti-PRRSV N protein monoclonal
antibody at 37 °C for 1 h, followed by washing three times with PBS.
Next, cells were incubated with FITC-conjugated goat anti-mouse IgG
antibodies for 1 h at 37 °C. After washing three times with PBS, cells were
examined using fluorescence microscopy (IX71, Olympus Corporation,
Japan).

2.6. Western blot

Cells were lysed with RIPA lysis buffer (CWBIO, China) supplemented
with a protease inhibitor mixture (Mei5 Biotechnology, China). Proteins
were separated on SDS-PAGE gels and then transferred onto poly-
vinylidene fluoride membranes (Millipore, USA). Membranes were then
blocked with 5% skim milk in PBST (PBS with 0.1% Tween-20) for 1 h at
room temperature, and then incubated with anti-PRRSV N (1:1000), anti-
LC3B (1:1000), or p-actin (1:5000) for 1 h at room temperature. After
washing three times, the membranes were incubated with appropriate
secondary antibody (1:5000) for 1 h at room temperature. After washing,
the antibodies were visualized using chemiluminescence (ECL; CWBIO,
China) reagent. p-actin was used as a loading control.

2.7. Plasmid construction and luciferase reporter assays

To verify whether LC3B or ATG7 is targeted by miR-204, the pre-
dicted target site in the porcine LC3B 3'UTR (282 bp) or ATG7 3'UTR
(299 bp) was amplified and inserted into the C-terminus of the firefly
luciferase gene in the pGL3-control vector (Promega, USA) to create wild
type 3'UTR vector (LC3B-3'UTR-wt or ATG7-3'UTR). A mutant vector
(LC3B-3'UTR-mut) was constructed by mutating four seed nucleotides
using a site-directed mutagenesis kit (NEB, USA) according to the
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Fig. 1. The expression of miR-204 remains unchanged during PRRSV infection. A PAMs and PPMs were isolated from SPF pigs and the expression of miR-204 was
detected by RT-qPCR. B PAMs were infected with HP-PRRSV isolate HV (MOI = 1) for the indicated times, and the expression of miR-204 and PRRSV ORF7 was
analyzed by RT-qPCR, respectively. C PAMs were either mock or infected with HV at an MOI of 0.02, 0.1 or 0.5 for 24 h, and then cells were harvested for the analysis
of miR-204 and PRRSV ORF7 expressions by RT-qPCR. Results are expressed as means + standard deviation from three independent experiments. P values were
analyzed using Student's t-test. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.

manufacturer's instructions. Gene-specific primers were listed in Sup-
plementary Table S3.

3D4/21 cells were co-transfected with pGL3-control vector, pRL-TK,
or miRNAs for 36 h. Cell extracts were prepared and analyzed for
firefly and Renilla luciferase activities using a dual-luciferase reporter
assay kit (Promega, USA) according to the manufacturer's protocol.

2.8. UV cross-linking and immunoprecipitation (CLIP)

PAMs were plated on 6-well culture plates and then transfected with
NC or miR-204 mimics using HiPerFect reagents for 30 h. Next, cells were
cross-linked with UV and lysed with lysis buffer supplemented with a
protease inhibitor mixture. The anti-Ago2 monoclonal antibody or iso-
type control IgG was mixed with protein A-agarose (Sigma, USA) for 2 h,
and then incubated with the supernatants of cell lysate at 4 °C overnight.
The RNA from the immunoprecipitation product was isolated by using
TRIzol and quantified by RT-qPCR.

2.9. Viral titration assay

The supernatants from cell cultures were collected at the indicated
time points after virus inoculation, and fifty percent tissue culture
infective dose (TCIDs() assay was performed to assess viral titration as
described previously (Zhang et al., 2005) with minor modifications.
Firstly, PAMs were plated on 96-well culture plates for 12 h. Then cells
were infected with ten-fold serial dilution of the indicated viral super-
natants, and 100 mL of the dilutions was added per well in replicates of
eight. Finally, 3 or 4 days later, the viral titers were determined using the
Reed-Muench method and expressed as TCIDs.

2.10. miRNA target prediction

The online databases, TargetScan (https://www.targetscan.org
/vert_80/) and miRPathDB (https://mpd.bioinf.uni-sb.de/), were used
to predict the targets of miR-204. The gene sequences of LC3B 3'UTRs of
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different species were obtained from NCBI (https://www.ncbi.nlm.nih
.gov/). SnapGene software (version 3.2.1, www.snapgene.com) was
used to compare sequences.

2.11. Statistical analysis

All the experiments were conducted with at least three independent
replicates. The results were analyzed using GraphPad Prism software
(version 8.0.2, www.graphpad.com). Differences between the data were
analyzed using Student t-test. Significance was denoted as follows:
*P < 0.05; **P < 0.01; ***P < 0.001; and ns, not significant.

3. Results
3.1. miR-204 suppresses PRRSV replication

PRRSV is highly restricted to mononuclear-macrophage lineage. It
can replicate efficiently in PAMs but not in PPMs (Duan et al., 1997). Our
previous studies have shown that DEmiRNAs in PAMs and PPMs may
play roles in regulating PRRSV infection and replication. miR-142-3p,
which is expressed higher in PPMs and lower in PAMs, inhibits PRRSV
infection by directly targeting Racl in PAMs (Yao et al., 2022). Another
DEmiRNA, miR-150, suppresses PRRSV replication by targeting viral
genome and SOCS1 (Li et al, 2022). Here, we performed
high-throughput sequencing of small RNAs and identified miR-204 as a
candidate, which is expressed higher in PPMs than in PAMs. For further
verification, we examined the expression of miR-204 by RT-qPCR and
confirmed that miR-204 expression was at higher levels in PPMs,
compared to PAMs (Fig. 1A). Since viral infection may influence various
miRNA expression in host cells, we performed a PRRSV-infected time-
course experiment and a virus dose-dependent experiment in PAMs and
analyzed the expression of miR-204 by RT-qPCR during PRRSV infection.
Our results showed that PRRSV had no effect on the expression of
miR-204 in PAMs (Fig. 1B and C), suggesting that PRRSV infection does
not modulate miR-204 expression.
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Fig. 2. miR-204 impairs PRRSV replication. A-C PAMs were transfected with negative control (NC) or miR-204 mimics at the indicated concentrations for 12 h,
followed by infection with HP-PRRSV isolate HV (MOI = 0.01) for 36 h. Then, cells were fixed for immunofluorescent staining of PRRSV N protein (scale bar = 200
pm) (A), harvested for PRRSV ORF7 expression by RT-qPCR (B), or collected for PRRSV N protein detection by Western blot (C). D, E PAMs were transfected with NC
or miR-204 mimics at a final concentration of 60 nmol/L for 12 h, followed by infection with HP-PRRSV isolate HV (MOI = 0.01) for the indicated times. The
expression of PRRSV ORF7 was analyzed by RT-qPCR (D), and the virus titers were determined by TCIDs, (E). F PAMs were transfected with NC or miR-204 mimics at
the indicated concentrations for 12 h, followed by infection with classical PRRSV isolate VR2332 (MOI = 0.01) for 36 h. The expression of PRRSV ORF7 was analyzed
by RT-qPCR. Results are expressed as means =+ standard deviation from three independent experiments. P values were analyzed using Student's t-test. *P < 0.05; **P <

0.01; ***P < 0.001; ns, not significant.

To investigate the role of miR-204 in the regulation of PRRSV repli-
cation, we transiently transfected miR-204 mimics or NC mimics into
PAMs for 12 h and then infected the cells with HP-PRRSV isolate HV
(MOI = 0.01). After 36 h, cells were harvested for indirect immunoflu-
orescence assay (IFA). The results showed that miR-204 significantly
inhibited PRRSV replication in a dose-dependent manner (Fig. 2A).
Meanwhile, we performed RT-qPCR to detect the expression of PRRSV
ORF?7. Our results indicated that overexpression of miR-204 resulted in a
remarkable decrease of PRRSV ORF7 mRNA by around 40%, 60%, and
70% when miR-204 mimics were at a concentration of 20, 40, and
60 nmol/L, respectively (Fig. 2B). Western blot also verified the inhibi-
tory effect of miR-204 on PRRSV replication (Fig. 2C). To further clarify
the function of miR-204, we tested the effect of miR-204 on PRRSV
replication at different time points after PRRSV infection. Our results
revealed that miR-204 suppressed PRRSV replication at the indicated
time points and the inhibitory effect reached a peak at 36 h post-infection
(Fig. 2D). Subsequently, TCIDsy assay was applied to monitor the
dynamics of PRRSV replication in PAMs overexpressed with miR-204.
The data showed that viral growth was repressed about 10 folds
compared to NC at 36 h post-infection (Fig. 2E). To examine whether the
inhibitory effect of miR-204 on PRRSV replication is strain-dependent,
we infected miR-204-transfected PAMs with classical PRRSV isolate
VR2332. The data verified that miR-204 also impaired PRRSV VR2332
replication (Fig. 2F). Taken together, these results indicate that miR-204
suppresses PRRSV replication.

3.2. miR-204 directly targets LC3B

To explore the mechanism of miR-204 in the regulation of PRRSV
replication, we used miRNA target-prediction algorithms, TargetScan
and miRPathDB, to predict its specific targets. The analysis showed that
miR-204 had multiple potential targets involved in different life
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activities. Since the existing studies have demonstrated that PRRSV can
use the autophagic machinery to promote its replication, we then focused
on the targets associated with autophagy. We found that autophagy
related 7 (ATG7), a key regulator of autophagy, was a possible target of
miR-204. Analysis revealed that there was a putative target site for miR-
204 in ATG7 3'UTR (Supplementary Fig. S1A). However, we demon-
strated that miR-204 did not target ATG7 (Supplementary Fig. S1B).
Meanwhile, we found that LC3B was also a predicted target of
miR-204. LC3B is required for autophagosome formation and matura-
tion, and is currently the most widely used molecular marker to monitor
autophagy (Klionsky et al., 2021). Bioinformatics analysis uncovered
that miR-204 could bind to 3'UTR of LC3B through a seed match inter-
action and the putative target site was conserved across different species
(Fig. 3A). To verify the relationship between LC3B and miR-204, we
amplified the predicted target site in the LC3B 3'UTR and inserted it into
a firefly luciferase reporter vector (LC3B-3'UTR-wt). In addition, a
mutant vector (LC3B-3'UTR-mut) was constructed to eliminate the
possible recognition by replacing four seed nucleotides (AAAGGGA to
UAUGCGU) (Fig. 3A). Each of the vectors was co-transfected with
miR-204 mimics into 3D4/21 cells (a cell line derived from porcine
alveolar macrophage), and the luciferase activity was analyzed. The re-
sults indicated that miR-204 reduced the luciferase activity of
LC3B-3'UTR-wt, but did not influence the activity of LC3B-3'UTR-mut
(Fig. 3B). In addition, we proved that miR-204 suppressed the luciferase
activity of LC3B-3'UTR-wt in a dose-dependent manner (Fig. 3C). The
inhibitory effect of miR-204 was also verified by Western blot. As shown
in Fig. 3D, ectopic expression of miR-204 decreased the protein level of
LC3B. To further prove LC3B as a target of miR-204, we mutated the seed
region of miR-204 and performed the same experiments. As predicted,
miR-204 mutants had no effects on the luciferase activity of
LC3B-3'UTR-wt or expression of LC3B protein (Fig. 3E and F). These data
suggest that miR-204 targets LC3B to downregulate its expression.
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Fig. 3. miR-204 directly targets LC3B. A Schematic presentation of base pairing between the 3'UTR of LC3B and miR-204 sequence. TargetScan and miRPathDB were
used to predict the targets of miR-204. The gene sequences of LC3B 3'UTRs of different species were obtained from NCBI and analyzed by SnapGene software. The
underlined red bases are their paired bases and their corresponding mutant bases. B 3D4/21 cells were co-transfected with LC3B-3'UTR-wt or LC3B-3'UTR-mut
luciferase reporter vector, pRL-TK, and NC or miR-204 mimics for 36 h and then harvested for luciferase reporter assay. C, E miR-204 mimics or mutants at different
doses were co-transfected into 3D4/21 cells with LC3B-3'UTR-wt luciferase reporter vector and pRT-TK for 36 h, and then the activities of luciferase were measured.
D, F PAMs were transfected with different doses of miR-204 mimics or mutants for 36 h, and the expression of LC3B protein was detected by Western blot. G PAMs
were transfected with NC or miR-204 mimics for 30 h, followed by lysis of cells and immunoprecipitation with either anti-Ago2 or anti-IgG. RT-qPCR was performed to
analyze the presence of LC3B and miR-204 in the cell immunoprecipitates. Results are expressed as means =+ standard deviation from three independent experiments. P
values were analyzed using Student's t-test. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.

To obtain further evidence that LC3B is directly targeted by miR-204, we
performed an RNA-induced silencing complex (RISC) immunoprecipitation
assay. PAMs were transfected with miR-204 mimics for 30 h and then cells
were harvested to pull down LC3B mRNA and miR-204 with Ago2 mono-
clonal antibody. As shown in Fig. 3G, LC3B mRNA was significantly
enriched in the RISC complex together with miR-204, suggesting that there
is a direct interaction between miR-204 and LC3B mRNA. Overall, these
results indicate that miR-204 directly targets LC3B and represses its
expression.

3.3. Autophagy enhances PRRSV replication

Although previous reports have shown that PRRSV utilizes autophagy
to promote self-replication, studies are conducted almost exclusively in
Marc-145 cells (a cell line derived from Green Monkey kidney cell) rather
than in PAMs (the native host cells of PRRSV) (Chen et al., 2012; Li et al.,
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2016b; Sun et al., 2012). Thus, we investigated the relationship between
autophagy and PRRSV replication in PAMs. PAMs were pretreated with
rapamycin, an autophagy activator, for 2 h prior to PRRSV infection.
Then, cells were harvested and subjected to Western blot analysis. The
results demonstrated that PRRSV infection induced autophagy, and the
expression of PRRSV N protein was enhanced when autophagy was
induced by rapamycin before viral infection (Fig. 4A). In contrast, the
level of PRRSV N protein was downregulated when PAMs were pre-
treated with 3-methyladenine (3-MA), an autophagy inhibitor (Fig. 4B).
These data suggest that induction of autophagy promotes PRRSV repli-
cation in PAMs. For further verification, we designed two specific sSiRNAs
targeting LC3B (si-LC3B-1 and si-LC3B-2). As shown in Fig. 4C and D,
both siRNAs efficiently knocked down LC3B expression in PAMs at both
mRNA and protein levels. Subsequently, we transfected siRNAs into
PAMs for 24 h followed by PRRSV infection and then performed RT-qPCR
and TCIDsq assay. Compared to NC, knockdown of LC3B by siRNAs
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was tested by Western blot analysis. C, D PAMs were transfected with LC3B-specific siRNAs (60 nmol/L) for 24 h, and then the expression of LC3B was analyzed by RT-
qPCR (C) or Western blot (D). E, F PAMs were transfected with LC3B-specific siRNAs (60 nmol/L) for 24 h followed by infection with PRRSV (MOI = 0.01). At 24 h
later, cells were harvested to analyze PRRSV ORF7 expression by RT-qPCR (E), and the culture supernatant was collected to analyze viral titers (F). Results are
expressed as means =+ standard deviation from three independent experiments. P values were calculated using Student's t-test. *P < 0.05; **P < 0.01; ***P < 0.001; ns,
not significant.
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Fig. 5. miR-204 suppresses PRRSV replication by inhibiting autophagy via targeting LC3B. A, B PAMs were transfected with miR-204 mimics (A) or mutants (B) for
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significantly inhibited the expression of PRRSV ORF7 (Fig. 4E). Corre-
spondingly, the viral titers were significantly decreased in LC3B-silenced
cells (Fig. 4F). In conclusion, these data demonstrate that PRRSV infec-
tion induces autophagy, which in turn facilitates viral replication.

3.4. miR-204 represses autophagy by targeting LC3B, thus inhibiting
PRRSYV replication

Since miR-204 directly targets LC3B, we speculate that miR-204 re-
presses PRRSV replication by inhibiting autophagy. To test this
assumption, we first transfected miR-204 mimics into PAMs for 24 h and
then treated cells with rapamycin for 2 h. Cells were then harvested for
Western blot analysis. As shown in Fig. 5A and B, application of miR-204
mimics had a negative effect on autophagy induced by rapamycin, while
miR-204 mutants had no effect. These results imply that miR-204 has an
inhibitory effect on autophagy. To explore whether miR-204 inhibits
PRRSV replication by interfering with autophagy induced by PRRSV,
PAMs were transfected with miR-204 mimics for 24 h followed by PRRSV
infection. Then, we observed that the expression of PRRSV N protein and
LC3B protein was significantly downregulated in miR-204-transfecting
cells in a dose-dependent manner (Fig. 5C). However, this inhibitory
phenomenon disappeared when the cells were transfected with miR-204
mutants (Fig. 5D). Taken together, we conclude that miR-204 remarkably
inhibits autophagy induced by PRRSV infection via directly targeting
LC3B, leading to the inhibition of viral replication.

4. Discussion

In order to cope with viral infection, hosts have often taken a variety
of measures to defense themselves, and miRNAs play a non-negligible
role in it. Here, we found that host miRNA miR-204 expressed lower in
PRRSV target cells (PAMs) had the ability to resist PRRSV replication.
Subsequently, we verified that miR-204 directly targeted LC3B, which is
necessary for the formation and maturation of autophagosome. Mean-
while, we demonstrated that autophagy induced by rapamycin enhanced
PRRSV replication in PAMs, while inhibition of autophagy by 3-MA or
specific siRNAs impaired viral replication. Thus, we conclude that

Virologica Sinica 38 (2023) 690-698

miR-204 represses autophagy by targeting LC3B, thereby inhibiting
PRRSV replication.

PRRS is a major economic issue for the swine industry worldwide.
The annual economic cost of PRRS estimated for U.S. producers is around
$664 million, an increase of 18.5% over the past eight years (Der-
stuganova et al., 2013; Neumann et al., 2005). The latest economic sur-
vey in Germany shows that pig farms have experienced a significant loss
due to PRRS and its impact on farm profits is —19.1% on average and
—41% in the worst cases (Renken et al., 2021). To deal with PRRS, re-
searchers have developed different vaccines. However, the protection
provided by current vaccines is limited due to high frequency mutations,
gene recombination between different PRRSV lineages, and immuno-
suppression caused by PRRSV (Montaner-Tarbes et al., 2019). Therefore,
to study PRRSV replication-regulations will provide help for the pre-
vention and control of PRRS.

Increasing evidence has documented that host miRNAs participate in
modulating PRRSV replication (Liu et al., 2017; Zhang and Feng, 2021).
The regulatory mechanisms can be roughly divided into three types ac-
cording to their targets. First, miRNAs directly target the genome of
PRRSV. miR-23, miR-505 and miR-378 effectively suppress PRRSV
replication by directly targeting viral RNAs (Zhang et al., 2014). Sec-
ondly, miRNAs can target signaling pathways especially involved in host
antiviral immune response. For instance, miR-150 upregulated by PRRSV
infection via activating the PKC/JNK/c-Jun pathway can impair PRRSV
replication by targeting SOCS1, a negative regulator of JAK/STAT
signaling pathway (Li et al., 2022). In contrast, miR-30c inhibits the
function of type I interferon by targeting JAK1 and IFNAR2 expression
and then promotes PRRSV replication (Liu et al., 2018; Zhang et al.,
2016). Thirdly, miRNAs can target viral receptors to block PRRSV entry.
The PRRSV receptors, including CD163, CD151 and MYH9, appear to be
targeted by miR-181, miR-506, and let-7f-5p, respectively (Guo et al.,
2013; Li et al., 2016a; Wu et al., 2014). In the present study, we find that
miR-204 strongly suppresses PRRSV replication by inhibiting autophagy
via directly targeting LC3B.

To date, an increasing number of studies have revealed the direct
interaction between autophagy and infection processes of multiple
pathogens. As an important innate antiviral response, autophagy can
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Fig. 6. Model for the mechanisms by which miR-204 suppresses PRRSV replication. PRRSV infection induces autophagy, which is utilized by virus to promote its
replication. miR-204 directly targets LC3B to suppress autophagy, leading to the inhibition of PRRSV replication. Figure was created with BioRender (https://bior

ender.com).
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degrade viral components, viral particles or even host factors required for
viral replication to resist viruses, such as Sindbis virus and Human im-
munodeficiency virus 1 (Orvedahl et al., 2010; Ribeiro et al., 2016).
However, some viruses have evolved various strategies to escape the
clearance by autophagy, and even exploit autophagy to ensure their
survival or replication in hosts. For example, hepatitis C virus (HCV)
NS4B induces Rubicon expression in the early stage of viral infection to
inhibit the maturation of autophagosomes, leading to the accumulation
of autophagosomes in support of HCV replication (Wang et al., 2015).
miRNAs have been shown to play an important role in the interaction
between viral replication and autophagy. For instance, miR-146a-5p,
which is upregulated by hepatitis B virus (HBV) infection, induces
autophagy via the XIAP-MDM2/p53 pathway, leading to HBV propaga-
tion (Fu et al., 2019). On the contrary, miR-505 inhibits autophagy
activation by reducing HMGB1 expression, and ultimately inhibits the
replication of Borna disease virus 1 (BDV1) (Guo et al., 2022).

Over the past few years, more and more attention has been paid to
the effect of autophagy on PRRSV replication. PRRSV infection induces
incomplete autophagy, and the fusion of intracellular lysosomes and
autophagosomes is limited, resulting in the accumulation of auto-
phagosomes and ultimately serving as replication sites for PRRSV (Sun
et al.,, 2012). Moreover, NDRG1 expression is downregulated by
PRRSV infection, which induces autophagy, changes cellular lipid
metabolism, and ultimately promotes PRRSV replication (Wang et al.,
2019). A recent report has found that PRRSV infection induces
endoplasmic reticulum stress, opens store operated calcium entry
(SOCE) channel, disrupts host calcium homeostasis, and utilizes
autophagy via CaMKII-AMPK-mTOR signaling to promote viral repli-
cation (Diao et al., 2023). In the present study, treatment with rapa-
mycin (activator of autophagy) prior to viral infection led to a
significant upregulation of LC3B and PRRSV N proteins in PAMs.
Conversely, 3-MA (inhibitor of autophagy) reduced the expression of
LC3B as well as PRRSV N protein. These results are consistent with
previous studies that autophagy is induced and utilized by PRRSV for
its replication (Fig. 4). Interestingly, we found that miR-204 was
highly expressed in PPMs, the non-permissive cells to PRRSV, but
extremely lower in PAMs, the target cells of PRRSV. Moreover, we
found that the expression of miR-204 was not regulated by PRRSV
infection. Hence, it is reasonable to assume that it is beneficial for
PRRSV to hijack autophagy to promote its proliferation when miR-204
is kept at an extremely lower level in PAMs during PRRSV infection.

LC3B, the most studied and best understood protein of LC3/
GABARAP family, is essential for the execution of autophagy (Schaaf
et al., 2016). Here, we revealed a previously unreported relationship
between LC3B, PRRSV, and miR-204 in the context of viral infection.
Bioinformatics analysis showed that LC3B could be a direct target of
miR-204, which was later confirmed by luciferase reporter assay and
CLIP assay. During viral infection, we observed that overexpression of
miR-204 significantly reduced the protein levels of LC3B as well as
PRRSV N, while miR-204 mutants had no effect. Based on these results,
we conclude that miR-204 suppresses autophagy by downregulating
LC3B, thus impairing PRRSV replication.

5. Conclusions

Overall, our findings prove that miR-204 is a negative regulator of
PRRSV replication by regulating LC3B-mediated autophagy, which will
help us for the development of novel antiviral strategies against PRRSV
infection (Fig. 6).
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